
ECE444: Software Engineering

Design Patterns 3

Shurui Zhou



OO Design Principles

Building stable and 
flexible systems



• the GoF book
• Elements of Reusable Object-Oriented 

Software
• 23 OO patterns



Design Patterns

• Design Patterns – expert solutions to recurring problems in a certain 
domain
• Description usually involves problem definition, driving forces, 

solution, benefits, difficulties, related patterns.
• Pattern Language - a collection of patterns, guiding the users through 

the decision process in building a system
• Patterns are related (high level-low level)



• Creational patterns provide object creation mechanisms that 

increase flexibility and reuse of existing code.

• Structural patterns explain how to assemble objects and classes into 

larger structures, while keeping the structures flexible and efficient.

• Behavioral patterns take care of effective communication and the 

assignment of responsibilities between objects.

Classification of patterns



• Creational patterns

• Singleton

• Factory Method

• Structural patterns

• Composite

• Behavioral patterns

• Strategy

• Observer

Classification of patterns



Singleton 

• The Singleton class declares the static 
method getInstance that returns the 
same instance of its own class.
• The Singleton’s constructor should be 

hidden from the client code. Calling 
the getInstance method should be the 
only way of getting the Singleton 
object.



Factory Method The Product declares 
the interface

Concrete Products are 
different implementations of 
the product interface.

The Creator class declares the 
factory method that returns new 
product objects. It’s important 
that the return type of this 
method matches the product 
interface.

Concrete Creators override the base factory method
so it returns a different type of product.
Note that the factory method doesn’t have 
to create new instances all the time. It can also 
return existing objects from a cache, an object pool, 
or another source.



Composite Design Pattern - Structure
The Component interface 
describes operations that are 
common to both simple and 
complex elements of the 
tree.

The Leaf is a basic element 
of a tree that doesn’t have 
sub-elements.

The Composite/container is an 
element that has sub-elements: 
leaves or other containers. A 
container doesn’t know the concrete 
classes of its children. It works with all 
sub-elements only via the component 
interface

Client works with all elements through the component 
interface. As a result, the client can work in the same way 
with both simple or complex elements of the tree.



• Creational patterns

• Singleton

• Factory Method

• Structural patterns

• Composite

• Behavioral patterns

• Strategy

• Observer

Classification of patterns



Strategy
• Strategy is a behavioral design pattern that lets 

you define a family of algorithms, put each of 
them into a separate class, and make their 
objects interchangeable.



Strategy

• The strategy pattern allows grouping related algorithms under an 
abstraction, which allows switching out one algorithm or policy for 
another without modifying the client. 
• Instead of directly implementing a single algorithm, the code receives 

runtime instructions specifying which of the group of algorithms to 
run.



Strategy



Strategy
The Context maintains a 
reference to one of the 
concrete strategies and 
communicates with this 
object only via the 
strategy interface.

The Strategy interface is 
common to all concrete 
strategies. It declares a 
method the context uses to 
execute a strategy.

Concrete 
Strategies implement 
different variations of 
an algorithm the 
context uses.

The context calls the execution 
method on the linked strategy 
object each time it needs to run the 
algorithm. The context doesn’t 
know what type of strategy it 
works with or how the algorithm is 
executed.

The Client creates a specific 
strategy object and passes it 
to the context. The context 
exposes a setter which lets 
clients replace the strategy 
associated with the context 
at runtime.



Strategy - Applicability

• When you want to use different variants of an algorithm within an 
object and be able to switch from one algorithm to another during 
runtime.
• When you have a lot of similar classes that only differ in the way 

they execute some behavior.
• To isolate the business logic of a class from the implementation 

details of algorithms that may not be as important in the context of 
that logic.
• When your class has a massive conditional operator that switches 

between different variants of the same algorithm.



Strategy – Pros & Cons



• Creational patterns

• Singleton

• Factory Method

• Structural patterns

• Composite

• Behavioral patterns

• Strategy

• Observer

Classification of patterns



Observer Pattern



Observer Pattern

• Observer is a behavioral design pattern that lets you define a 
subscription mechanism to notify multiple objects about any events 
that happen to the object they’re observing.
• Publishers + Subscribers = Observer Pattern



How newspaper or magazine
subscriptions work?
1. A newspaper publisher goes into business and begins publishing 

newspapers.
2. You subscribe to a particular publisher, and every time there’s a 

new edition it gets delivered to you. As long as you remain a 
subscriber, you get new newspapers.

3. You unsubscribe when you don’t want papers anymore, and they 
stop being delivered.

4. While the publisher remains in business, people, hotels, airlines, 
and other businesses constantly subscribe and unsubscribe to the 
newspaper.



Observer Pattern

A subscription mechanism lets 
individual objects subscribe to 
event notifications.

Visiting the store vs. sending spam



Observer Pattern

Concrete Subscribers perform 
some actions in response to 
notifications issued by the 
publisher. All of these classes 
must implement the same 
interface so the publisher 
isn’t coupled to concrete 
classes.

The Publisher issues events of 
interest to other objects. These 
events occur when the publisher 
changes its state or executes some 
behaviors. Publishers contain a 
subscription infrastructure that lets 
new subscribers join and current 
subscribers leave the list.

The Subscriber interface declares 
the notification interface. In most 
cases, it consists of a 
single update method. The method 
may have several parameters that 
let the publisher pass some event 
details along with the update.

The Client creates publisher and 
subscriber objects separately and then 
registers subscribers for publisher 
updates.



Observer - Applicability

• When changes to the state of one object may require changing other 
objects, and the actual set of objects is unknown beforehand or 
changes dynamically.

• When some objects in your app must observe others, but only for a 
limited time or in specific cases.



Real world Application

• Splitwise group : Anyone adds or updates any entry in the group - all 
members of group get a notification
• Following a post/event: If one follows a post , (s)he gets added to the 

observers & any further comments on the same post , send a 
notification to all the other observers
• Software Repository: Under the push notification model , devices are 

observable for the central software repository & as soon as there is 
new software from one of the observers , all the devices registered will 
be sent a push notification to check for that software
• Weather update
• Stock prices update
• Train ticket confirmation



Observer - Pros and Cons



• Creational patterns

• Singleton

• Factory Method

• Structural patterns

• Composite

• Behavioral patterns

• Strategy

• Observer

Classification of patterns



Design Patterns

Model
/ Subject

View

Controller

Factory

Observer

Command



Architecture



MVC Architecture



MVC Architecture
• Model – Observer Pattern
• View – Composite + Strategy
• Controller -- Strategy Pattern



MVC Architecture
• Model – Observer Pattern
• View – Composite + Strategy
• Controller -- Strategy Pattern



MVC Architecture
• Model – Observer Pattern
• View – Composite + Strategy
• Controller -- Strategy Pattern



MVC Architecture
• Model – Observer Pattern
• View – Composite + Strategy
• Controller -- Strategy Pattern



• Creational patterns

• Singleton

• Factory Method

• Structural patterns

• Composite

• Adapter

• Behavioral patterns

• Strategy

• Observer

Classification of patterns



Adapter



Adapter

• Adapter is a structural design pattern that allows objects with 
incompatible interfaces to collaborate.



Adapter



Adapter
Client is a class that 
contains the existing 
business logic of the 
program.

Client Interface describes a protocol 
that other classes must follow to be 
able to collaborate with the client code.

Service is some useful class 
(usually 3rd-party or legacy). The 
client can’t use this class directly 
because it has an incompatible 
interface.

Adapter is a class that’s able to work 
with both the client and the service: it 
implements the client interface, while 
wrapping the service object. The 
adapter receives calls from the client 
via the adapter interface and translates 
them into calls to the wrapped service 
object in a format it can understand.



Adapter

The Class Adapter doesn’t need to wrap any 
objects because it inherits behaviors from 
both the client and the service. The 
adaptation happens within the overridden 
methods. The resulting adapter can be used 
in place of an existing client class.



Adapter - Applicability

• When you want to use some existing class, but its interface isn’t 
compatible with the rest of your code.

• When you want to reuse several existing subclasses that lack some 
common functionality that can’t be added to the superclass.



Adapter – Pros and Cons



https://refactoring.guru/design-patterns/catalog



Criticism of Design Patterns
• Kludges for a weak programming language
Usually the need for patterns arises when people choose a programming 
language or a technology that lacks the necessary level of abstraction.
• Inefficient solutions
Patterns try to systematize approaches that are already widely used. 
• Unjustified use
If all you have is a hammer, everything looks like a nail.



Cargo cult programming

https://blog.ndepend.com/are-solid-principles-cargo-cult/


