ECE444: Software Engineering

Design Patterns 3

Shurui Zhou

«;é* The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

BS) B8y

%2 UNIVERSITY OF TORONTO

AAAAA

OO Design Principles

n Single responsibility Building stable and
principle

flexible systems
Open/closed principle

» Liskov substitution principle

Interface segregation
principle

Dependency inversion
principle

"iﬁré The Edward S. Rogers Sr. Department

=] of Electrical & Computer Engineering

5‘% UNIVERSITY OF TORONTO

Copyrighted Material

Design Patterns

Elements of Reusable
Object-Oriented Software

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

<
<

* the GoF book

* Elements of Reusable Object-Oriented
Software

* 23 OO0 patterns

DNILNAWOD TYNOISSIHO¥d AFTSIM-NOSIAAY

w
m
e
w

"iﬁré The Edward S. Rogers Sr. Deparrment
& | lectrical & Computer Engineering

5‘% UNIVERSITY OF TORONTO

Design Patterns

* Design Patterns — expert solutions to recurring problems in a certain
domain

* Description usually involves problem definition, driving forces,
solution, benefits, difficulties, related patterns.

* Pattern Language - a collection of patterns, guiding the users through
the decision process in building a system

 Patterns are related (high level-low level)

g8 The Edward S. Rogers Sr. D}

;;: ‘ ectrical & Cor 1, r Engin

w $ UNIVERSITY OF TORONTO

Classification of patterns

* Creational patterns provide object creation mechanisms that

increase flexibility and reuse of existing code.

 Structural patterns explain how to assemble objects and classes into

larger structures, while keeping the structures flexible and efficient.

* Behavioral patterns take care of effective communication and the

assignment of responsibilities between objects.

%*i‘fr,? The Edward S. Rogers Sr. Department

=] of Electrical & Computer Engineering

%;@ UNIVERSITY OF TORONTO

Classification of patterns

ﬁ Creational patterns \

e Singleton

* Factory Method

 Structural patterns

\ Composite J

* Behavioral patterns

* Strategy

* Observer

Singleton

Client

* The Singleton class declares the static
method getinstance that returns the
same instance of its own class.

* The Singleton’s constructor should be
hidden from the client code. Calling
the getinstance method should be the
only way of getting the Singleton
object.

Singleton P

I

- instance: Singleton

-

- Singleton()
+ getinstance(): Singleton

if (instance == null) {

// Note: if you're creating an app with
'/ multithreading support, you should
// place a thread lock here.

instance = new Singleton()

}

return instance

Factory Method

The Creator class declares the
factory method that returns new
product objects. It's important
that the return type of this
method matches the product
interface.

Product p = createProduct()
p.doStuff()

The Product declares
the interface

Creator
«interface»
_____________________ Product
+ someOperation() >
+ createProduct(): Product + doStuff()
o o i

ConcreteCreatorA ConcreteCreatorB Concrete Concrete
ProductA ProductB

+ createProduct(): Product

+ createProduct(): Product

return new ConcreteProductA()

Concrete Creators override the base factory method

so it returns a different type of product.
Note that the factory method doesn’t have
to create new instances all the time. It can also

return existing objects from a cache, an object pool,

or another source.

Concrete Products are
different implementations of
the product interface.

Composite Design Pattern - Structure

The Component interface
describes operations that are
common to both simple and

complex elements of the
tree.

The Leaf is a basic element
of a tree that doesn’t have
sub-elements.

Edward S. Rogers Sr. Department
| of Electrical & Computer Engineering

%;@ UNIVERSITY OF TORONTO

N\

Client

|, Client works with all elements through the component

i

interface. As a result, the client can work in the same way
with both simple or complex elements of the tree.

«interface»

Component
+ execute()
A The Composite/container is an
T element that has sub-elements:
Leaf Composite leaves or other containers. A
container doesn’t know the concrete
" children: Component]] classes of its children. It works with all
+ execute() + add(c: Component) sub-elements only via the component
+ remove(c: Component) interface
Do some work. + getChildren(): Component[]
+ execute()

Delegate all work to
child components.

Classification of patterns

* Creational patterns

e Singleton

* Factory Method

 Structural patterns

* Composite

* Behavioral patterns

* Strategy

* Observer

Strategy

 Strategy is a behavioral design pattern that lets
you define a family of algorithms, put each of
them into a separate class, and make their
objects interchangeable. TransportationToAlrport Stratey

I

° o oMb &

City bus Personal car Taxi

Concrete strategies (options)

e Edwa
(3 ‘ ectti 1, er Engmeerino
ag,” UNIVERSITY OF TORONTO

Strategy

* The strategy pattern allows grouping related algorithms under an
abstraction, which allows switching out one algorithm or policy for
another without modifying the client.

* Instead of directly implementing a single algorithm, the code receives

runtime instructions specifying which of the group of algorithms to
run.

?fi},? The Edward S. Rogers Sr. Department
& | of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

Strategy

Navigator .
«interface»
-routeStrategy K> =>| RouteStrategy
+ buildRoute(A, B) + buildRoute(A, B)
route = routeStrategy.buildRoute(A, B) i' """"" E' """"" :
1 1
Road ! | PublicTransport
Strategy : Strategy
i
Walking
Strategy

e Edward S. Rogers Sr. Department
Electrical & Computer Engineering

%?:@ UNIVERSITY OF TORONTO

The Strategy interface is
St rategy Context «interface» / common to all concrete
- strategy Strategy strategies. It declares a
O—= method the context uses to

The Context maintains a / + setStrategy(strategy) + execute(data) execute a strategy.
reference to one of the + doSomething() A
concrete strategies and !
communicates with this)

trategy. t :
object only via the strategy.execute(|- Concret.e ,
strategy interface. ConcreteStrategies T Strategies implement

Client F----- > — different variations of
/ i an algorithm the
- + execute(data) context uses.

The Client creates a specific str = new SomeStrategy() (

context.setStrategy(str)

strategy object and passes it context.doSomething()

to the context. The context The context calls the execution

exposes a setter which lets other = new OtherStrategy(method on the linked strategy
clients replace the strategy context.setStrategy(other) ——> object each time it needs to run the
associated with the context context.doSomething() : :
3t runtime algorithm. The context doesn’t

know what type of strategy it
works with or how the algorithm is
executed.

e Edward S. Rogers Sr. Department
Electrical & Computer Engineering

‘?M‘g‘ UNIVERSITY OF TORONi"O

Strategy - Applicability

 When you want to use different variants of an algorithm within an
object and be able to switch from one algorithm to another during
runtime.

 When you have a lot of similar classes that only differ in the way
they execute some behavior.

* To isolate the business logic of a class from the implementation
details of algorithms that may not be as important in the context of

that logic.

 When your class has a massive conditional operator that switches
between different variants of the same algorithm.

g% The Edward S. Rogers St. Department

i | of Electrical & Computer Engineering

;;3“2 UNIVERSITY OF TORONTO

Strategy — Pros & Cons

v/ You can swap algorithms used inside an
object at runtime.

v You can isolate the implementation
details of an algorithm from the code
that uses it.

v/ You can replace inheritance with
composition.

v/ Open/Closed Principle. You can introduce
new strategies without having to change
the context.

X |f you only have a couple of algorithms
and they rarely change, there’s no real
reason to overcomplicate the program
with new classes and interfaces that
come along with the pattern.

X Clients must be aware of the differences
between strategies to be able to select a
proper one.

X A lot of modern programming languages
have functional type support that lets
you implement different versions of an
algorithm inside a set of anonymous
functions. Then you could use these
functions exactly as you'd have used the
strategy objects, but without bloating
your code with extra classes and
interfaces.

Classification of patterns

* Creational patterns

e Singleton

* Factory Method

 Structural patterns

* Composite

* Behavioral patterns

* Strategy

* Observer

Observer Pattern @3\’@)

Observer Pattern

e Observer is a behavioral design pattern that lets you define a
subscription mechanism to notify multiple objects about any events
that happen to the object they’re observing.

* Publishers + Subscribers = Observer Pattern

’fi}i The Edward S. Rogers Sr. Department

=] of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

How newspaper or magazine
subscriptions work?

1.

A newspaper publisher goes into business and begins publishing
newspapers.

You subscribe to a particular publisher, and every time there’s a
new edition it gets delivered to you. As long as you remain a
subscriber, you get new newspapers.

You unsubscribe when you don’t want papers anymore, and they
stop being delivered.

While the publisher remains in business, people, hotels, airlines,
and other businesses constantly subscribe and unsubscribe to the
newspaper.

g% The Edward S. Rogers St. Department

i | of Electrical & Computer Engineering

;;?:gz UNIVERSITY OF TORONTO

Observer Pattern

Hey, sign me
up, please! Publisher

Subscriber]
\ - subscribers[]
. _/ + addSubscriber(subscriber)
Subscriber + removeSubscriber(subscriber)

Me too!

A subscription mechanism lets
individual objects subscribe to
event notifications.

Visiting the store vs. sending spam

he Edward S. Rogers Sr. Department
f Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

The Publisher issues events of

interest to other objects. These The Subscriber interface declares
events occur when the publisher the notification interface. In most
changes its state or executes some cases, it consists of a

O b S e rve r P a tt e r n behaviors. Publishers contain a single update method. The method
subscription infrastructure that lets may have several parameters that
new subscribers join and current let the publisher pass some event
subscribers leave the list. details along with the update.

:

Publisher .
«interface» /
- subscribers: Subscriberf(] <>—>>| Subscriber
foreach (s in subscribers) - mainState + update(context)
s.update(this) + subscribe(s: Subscriber) A
+ unsubscribe(s: Subscriber) |
mainState = newState + notifySubscribers() ErT— =
notifySubscribers() + mainBusinessLogic() Subscribers N Concrete Subscribers perform
ubscribers N some actions in response to
/T\ _‘\ notifications issued by the
PR g PP publisher. ALl of these classes
s = new ConcreteSubscriber() =~ + update(context) H m;’::f;fygge()”;ﬁzt;g&fsahge
The Client creates publisher and : : updaate(contex
ublisher.subscribe(s ey’
subscriber objects separately and then P ,() [zg:sggume‘j to concrete
registers subscribers for publisher G l pd ’

updates. o

Client

The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

%?:“ UNIVERSITY OF TORONTO

Observer - Applicability

* When changes to the state of one object may require changing other
objects, and the actual set of objects is unknown beforehand or
changes dynamically.

 When some objects in your app must observe others, but only for a
limited time or in specific cases.

dward S. Rogers Sr. Depar
ctrical & Cor 1, r Engin

UNIVE RSITY OF TORONTO

Real world Application

* Splitwise group : Anyone adds or updates any entry in the group - all
members of group get a notification

* Following a post/event: If one follows a post, (s)he gets added to the
observers & any further comments on the same post, send a
notification to all the other observers

* Software Repository: Under the push notification model, devices are
observable for the central software repository & as soon as there is
new software from one of the observers, all the devices registered will
be sent a push notification to check for that software

 Weather update
» Stock prices update
* Train ticket confirmation

%*i':ff The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

% UNIVERSITY OF TORON"}O

Observer - Pros and Cons

v/ Open/Closed Principle. You can introduce X Subscribers are notified in random order.
new subscriber classes without having to
change the publisher’s code (and vice
versa if there’s a publisher interface).

v You can establish relations between
objects at runtime.

-‘i‘i{'{f The Edward S. Rogers Sr. Department
] | ectrical & Computer Engineering

%}% UNIVERSITY OF TORONTO

Classification of patterns

* Creational patterns

e Singleton

* Factory Method

e Structural patterns

* Composite

* Behavioral patterns

* Strategy

* Observer

Design Patterns

The Edward S. Rogers Sr. Department

f Electrical & Computer Engineering

&gg UNIVERSITY OF TORONTO

| >
: >
| » —]
|
|
|
| L. A vy & - -=7T === == v
| 1 Factory > View < I <
I I '
I I '
I I :
| . v v :
: : Observer g /,\S/Iuob(;eelct < Controller ﬁ—|—
I I 4 A |
| l I I
I
1 I Command :I
| = [—
: A
|
|
|
|
|

Architecture

-—-—_-—_-—_-—_-F_________________

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

%,a?mga UNIVERSITY OF TORONTO

MVC Architecture

VIEW

Gives you a presentation

CONTROLLER

Takes user input and figures out
what it means to the model.

Heve's the treamy .
controller; i lives in

MODEL

The model holds all
the data, state and
application logic. The
model is oblivious to

of the model. The view wddle- .
usually gets the state the middle Ry the view and controller,
and data it needs to although it provides an
display directly from interface to manipulate
’rhepm?),del_ Y and retrieve its
/ state and it can send
@ notifications of state
changes to observers.
Change your
The user did Controller state
something /
@ Change your
dlSPlG\/ class Player

play () {}

@ rip(){}
burn () {}
T've changed! \

*
o S L8 L

Model

View
. Hcvc’s the
This is the user information model; it
inteckate. handles all
ay\?\'\ca‘t\on data
and logic-

he Edward S. Rogers Sr. Department

Electrical & Computer Engineering

“‘ 9% UNIVERSITY OF TORONTO

MVC Architecture

* Model — Observer Pattern
* View — Composite + Strategy
* Controller -- Strategy Pattern

VIEW

Gives you a presentation
of the model. The view
usually gets the state
and data it needs to
display directly from
the model.

The user did
something

This is the user
interfate.

CONTROLLER

Takes user input and figures out
what it means to the model.

Here's the treamy
controller; it lives in

————o

< ®

Change your
Controller state
Change your
display

@

T've changed!

‘ -_____-_—___—_—————_—--"-._
=
/(\vww \I needg?m state /

information

MODEL

The model holds all

the data, state and
application logic. The
model is oblivious to
the view and controller,
although it provides an
interface to manipulate
and retrieve its

state and it can send
notifications of state
changes to observers.

class Player

play() {}
rip() {}
burn() {}

Model

Heve's the
mOdC\; \{
handles all
application data
and logjie-

e Edward S. Rogers Sr. Department

Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

MVC Architecture

* Model — Observer Pattern
* View — Composite + Strategy
* Controller -- Strategy Pattern

Obsel’Vel' ﬁ All these obsevvers will be

notified whenever state
thanges in the model.

Observers
Observable
My state has

changed! \

e —

G Any doject that's
—_— : n {:a{:c
I'd like to register \ \ ‘nbevested in s

: del

) ¢l angyes in the mo :

as an observer View cc \S?',CYS with the The model has no dependenties on
e Edward S. Rogers Sr. Department ’ 3

\ ’
sevvev. vViewers ovr (,on‘[:\rollcrs.
Electrical & Computer Engineering modC\ as an Ob ¢

‘?m“ UNIVERSITY OF TORON"}O

class Foo
void bar(

doBar ()

Controller

MVC Architecture

* Model — Observer Pattern
* View — Composite + Strategy
* Controller -- Strategy Pattern

Strategy) e s e

The user did -thc view
" i~) S
A handle
The view — / \mows how Jfao "

the user attions.

dc,csajccs I Controller
'H'\Ch COh"ZV‘O’ lev We
andle 'H"C — - ¢ Can SWap i
user aﬁ‘tior\s. —— zho{hcr bChav?or “"OV'
View \ > he view by ¢ha
'{:"\C COh‘{:ko{’cr halha
Controller

The view onl\/ wovrvies about ?\rcscn{:a-[:lon The tontroller
wovrvies about ‘bransla{:mg usev mPu‘E to attions on the model.

(3 ‘ ectrical & Computer Engineering

a@,” UNIVERSITY OF TORONTO

MVC Architecture

* Model — Observer Pattern
* View — Composite + Strategy
* Controller -- Strategy Pattern

Composite P“‘“*"/\ o e is 2 composite

) oL G| components (1abels

— 000 Window bl
& ! buktons, text entry, ete-/
| suBPM:] T\;\c {:o?——\cvc\ (',orn\?oncy\{‘,
tontains other iOm\?oncw{:S,
- | Lain other
9 e w;nd SO on until

% = (',omvonCY\‘lZS)
‘\;;(;-w_' \ .\5\ You get to the leaf nodes.
<z

cal & Computer Engineering

OF TORONTO

@ ectri
,%4 UNIVERSITY

Classification of patterns

* Creational patterns
* Singleton

* Factory Method

e Structural patterns

 Composite

 Adapter <«

* Behavioral patterns

* Strategy

 Observer

Adapter

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

mﬁi UNIVERSITY OF TORONTO

CA

T0-RAIL
anfﬁg

Adapter

* Adapter is a structural design pattern that allows objects with
incompatible interfaces to collaborate.

Application ‘ \/

Core Classes

Stock Data —.— '« ~ [\ Analytics
Provider Ll X-=>{JsON Library

-‘i‘i{'{f The Edward S. Rogers Sr. Department
] | ectrical & Computer Engineering

%}% UNIVERSITY OF TORONTO

he Edward S. Rogers Sr. Department

Electrical & Computer Engineering

$ UNIVERSITY OF TORONTO

Stock Data
Provider

Application

Core Classes
P ——

=>| XML

XML

XML to JSON
Adapter

| JSON

Client Interface describes a protocol
that other classes must follow to be

Ad a pte r able to collaborate with the client code.

T

Client is a class that «interface» Service is some useful class
contains the existing - Client Interface (usually 3rd-party or legacy). The
business logic of the T Client > client can’t use this class directly

program. + method(data) because it has an incompatible
interface.
A

Adapter Service

Adapter is a class that’s able to work / - adaptee: Service |——=]...

with both the client and the service: it : :
implements the client interface, while + method(data) + serviceMethod(specialData)

wrapping the service object. The

adapter receives calls from the client))
via the adapter interface and translates specialData = convertToServiceFormat(data)

them into calls to the wrapped service return adaptee.serviceMethod(specialData)
object in a format it can understand.

he Edward S. Rogers Sr. Department
lectrical & Computer Engineering

’? UNIVERSITY OF TORONTO

Adapter

Existing Class Service

Client —>|

+ method(data) + serviceMethod(specialData)

JAN JA
The Class Adapter doesn’t need to wrap any
objects because it inherits behaviors from Adapter
both the client and the service. The
adaptation happens within the overridden
methods. The res.ul’gng aFjapter can be used + method(data)
in place of an existing client class.

specialData = convertToServiceFormat(data)
return serviceMethod(specialData)

he Edward S. Rogers Sr. Department
f Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

Adapter - Applicability

* When you want to use some existing class, but its interface isn’t
compatible with the rest of your code.

* When you want to reuse several existing subclasses that lack some
common functionality that can’t be added to the superclass.

dward S. Rogers Sr. Depar
ctrical & Cor 1, r Engin

UNIVE RSITY OF TORONTO

Adapter — Pros and Cons

v/ Single Responsibility Principle. You can X The overall complexity of the code
separate the interface or data conversion increases because you need to introduce
code from the primary business logic of a set of new interfaces and classes.
the program. Sometimes it’s simpler just to change the

v Open/Closed Principle. You can introduce service class so that it matches the rest

new types of adapters into the program of your code.
without breaking the existing client
code, as long as they work with the

adapters through the client interface.

Edward S. Rogers Sr. Department
| ectrical & Computer Engineering

‘é!? S
%?:@ UNIVERSITY OF TORONTO

C

= T HEYY Y =l=l=l= T
= B GLED "@" & ooo

[KpEpEpEpKgl]

Factory Abstract Adapter Bridge Chain of Command Iterator Mediator
Method Factory Responsibility
A Bralo-Friencdly Guide
ooy Ve = e
B =~ SBA Bk A
B | 6RO %ﬁ} SHE
Builder Prototype Composite Decorator Memento Observer State Strategy

~ B
ﬂ,ﬂﬂ Disie
== NEEE
O MLLY
Singleton Facade Flyweight Template Visitor

Method kindle edition

D:>E

https://refactoring.guru/design-patterns/catalog

of Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

Criticism of Design Patterns

* Kludges for a weak programming language

Usually the need for patterns arises when people choose a programming
language or a technology that lacks the necessary level of abstraction.

* Inefficient solutions

Patterns try to systematize approaches that are already widely used.
* Unjustified use

If all you have is a hammer, everything looks like a nail.

%*i‘fr,? The Edward S. Rogers Sr. Department
& | of Electrical & Computer Engineering

+®) UNIVERSITY OF TORONTO

Cargo cult programming

https://blog.ndepend.com/are-solid-principles-cargo-cult/

Are SOLID principles Cargo Cult?

It looks like a plane, but will it fly?

